Role of oxygen in phagocyte microbicidal action.
نویسنده
چکیده
Immune information in the form of inflammatory mediators directs phagocyte locomotion and increases expression of opsonin receptors such that contact with an opsonized microbe results in receptor ligation and activation of microbicidal metabolism. Carbohydrate dehydrogenation and O2 consumption feed reactions that effectively lower the spin quantum number (S) of O2 from 1 to 1/2 and finally to 0. Oxidase-catalyzed univalent reduction of O2 (S = 1; triplet multiplicity) yields hydrodioxylic acid (HO2) and its conjugate base superoxide, O2- (S = 1/2; doublet multiplicity). Acid or enzymatic disproportionation of superoxide yields H2O2 (S = 0; singlet multiplicity). Haloperoxidase catalyzes H2O2-dependent oxidation of Cl- yielding HOCl (S = 0), and reaction of HOCl with H2O2 yields singlet molecular oxygen, 1O2 (S = 0; singlet multiplicity). The Wigner spin conservation rule restricts direct reaction of S = 1 O2 with S = 0 organic molecules. Lowering the S of O2 overcomes this spin restriction and allows microbicidal combustion. High exergonicity dioxygenation reactions yield electronically excited carbonyl products that relax by photon emission, i.e., phagocyte luminescence. Addition of high quantum yield substrates susceptible to spin allowed dioxygenation, i.e., chemiluminigenic substrates, greatly increases detection sensitivity and defines the nature of the oxygenating agent. Measurement of luminescence allows high sensitivity, real-time, and substrate-specific differential analysis of phagocyte dioxygenating activities. Under assay conditions where immune mediator and opsonin exposure are controlled, luminescence analysis of the initial phase of opsonin-stimulated oxygenation activity allows functional assessment of the opsonin receptor expression per circulating phagocyte and can be used to gauge the in vivo state of immune activation.
منابع مشابه
NADPH Oxidase-Driven Phagocyte Recruitment Controls Candida albicans Filamentous Growth and Prevents Mortality
Candida albicans is a human commensal and clinically important fungal pathogen that grows as both yeast and hyphal forms during human, mouse and zebrafish infection. Reactive oxygen species (ROS) produced by NADPH oxidases play diverse roles in immunity, including their long-appreciated function as microbicidal oxidants. Here we demonstrate a non-traditional mechanistic role of NADPH oxidase in...
متن کاملRole of Lactic Acid Bacteria-Myeloperoxidase Synergy in Establishing and Maintaining the Normal Flora in Man
Lactic acid bacteria (LAB) are incapable of cytochrome synthesis and lack the heme electron transport mechanisms required for efficient oxygen-based metabolism. Consequently, LAB redox activity is flavoenzyme-based and metabolism is fermentative, producing lactic acid, and in many cases, hydrogen peroxide (H2O2). Despite this seeming metabolic limitation, LAB dominate in the normal flora of the...
متن کاملSubterfuge and sabotage: evasion of host innate defenses by invasive gram-positive bacterial pathogens.
The development of a severe invasive bacterial infection in an otherwise healthy individual is one of the most striking and fascinating aspects of human medicine. A small cadre of gram-positive pathogens of the genera Streptococcus and Staphylococcus stand out for their unique invasive disease potential and sophisticated ability to counteract the multifaceted components of human innate defense....
متن کاملMyeloperoxidase: friend and foe.
Neutrophilic polymorphonuclear leukocytes (neutrophils) are highly specialized for their primary function, the phagocytosis and destruction of microorganisms. When coated with opsonins (generally complement and/or antibody), microorganisms bind to specific receptors on the surface of the phagocyte and invagination of the cell membrane occurs with the incorporation of the microorganism into an i...
متن کاملPhagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses.
Phagocytes such as neutrophils and monocytes play an essential role in host defenses against microbial pathogens. Reactive oxygen species (ROS), such as superoxide anion, hydrogen peroxide, the hydroxyl radical, and hypochlorous acid, together with microbicidal peptides and proteases, constitute their antimicrobial arsenal. The enzyme responsible for superoxide anion production and, consequentl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental Health Perspectives
دوره 102 شماره
صفحات -
تاریخ انتشار 1994